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“Vanilla” RNNs hold many 
advantages over feedforward 
networks for NLP tasks.
• Temporal context
• Variable-length input

• However …they’re not perfect (no 
networks are!)
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In particular, RNNs 
may struggle with 
managing context.

• In a simple RNN, the final state tends to 
reflect more information about recent items 
than those at the beginning of the sequence

• Distant timesteps → less information
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This long-distance information 
can be critical to many tasks!
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Why is it so hard 
to maintain long-
distance context?

• Hidden layers must perform two tasks 
simultaneously:

• Provide information useful for the 
current decision (input at t)

• Update and carry forward 
information required for future 
decisions (input at time t+1 and 
beyond)

• These tasks may not always be 
perfectly aligned with one another
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There’s also the issue of 
“vanishing gradients”….

• When small derivatives are repeatedly 
multiplied together, the products can 
become extremely small

• This means that when backpropagating 
through time for a long sequence, 
gradients can become so close to zero 
that they are no longer effective for 
model training!
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How can we address 
this?

• Design more complex RNNs that learn to:
• Forget information that is no longer 

needed
• Remember information still required 

for future decisions

2/13/20 Natalie Parde - UIC CS 521 7



Long Short-Term Memory 
Networks (LSTMs)

• Remove information no longer needed 
from the context, and add information 
likely to be needed later

• Do this by:
• Adding an explicit context layer to the 

architecture
• This layer controls the flow of 

information into and out of network 
layers using specialized neural units 
called gates
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LSTM Gates
• Feedforward layer + sigmoid 

activation + pointwise 
multiplication with the layer 
being gated

• Combination of sigmoid 
activation and pointwise 
multiplication essentially 
creates a binary mask

• Values near 1 in the mask 
are passed through 
nearly unchanged

• Values near 0 are nearly 
erased
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LSTM 
Gates

• Three main gates:
• Forget gate: Should we erase this 

existing information from the context?
• Add gate: Should we write this new 

information to the context?
• Output gate: What information should be 

revealed as output for the current hidden 
state?
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• Goal: Delete information from the context 
that is no longer needed

• 𝑓" = 𝜎(𝑈'ℎ")* +𝑊'𝑥")
• 𝑘" = 𝑐")*⨀𝑓"

Forget 
Gate

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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• Goal: Delete information from the context 
that is no longer needed

• 𝑓" = 𝜎(𝑈'ℎ")* +𝑊'𝑥")
• 𝑘" = 𝑐")*⨀𝑓"

Forget 
Gate

Context vector from the previous timestep
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Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

Regular RNN computation
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Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

New information to be added
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Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

Updated context vector contains:
• New information to be added
• Existing information from context vector that was 

not removed by the forget gate
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Output 
Gate

• Goal: Decide what information is required for 
the current hidden state

• 𝑜" = 𝜎(𝑈<ℎ")* +𝑊<𝑥")
• ℎ" = 𝑜"⨀tanh(𝑐")

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Output 
Gate

• Goal: Decide what information is required for 
the current hidden state

• 𝑜" = 𝜎(𝑈<ℎ")* +𝑊<𝑥")
• ℎ" = 𝑜"⨀tanh(𝑐")

Updated hidden layer output
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What does this process look like in a 
single LSTM unit?
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What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*
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What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*

𝜎 ⨀

Forget
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What does this process look like in a 
single LSTM unit?
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What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

2/13/20 Natalie Parde - UIC CS 521 23



What does this process look like in a 
single LSTM unit?
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Long Short-
Term 

Memory 
Networks 

(LSTMs)

• LSTMs thus accept as input:
• Context layer
• Hidden outputs from previous timestep
• Current input vector

• They return as output:
• Context layer
• Hidden outputs from the current 

timestep
• The output of the hidden layer can be used 

as input to subsequent layers in a stacked 
RNN, or to the network’s output layer
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Gated 
Recurrent 

Units 
(GRUs)

• Also manage the context that is passed 
through to the next timestep, but do so by 
utilizing a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that seen 
in LSTMs

• Feedforward layer + sigmoid 
activation + pointwise multiplication 
with the layer being gated, resulting in a 
binary-like mask
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Reset Gate
• Goal: Decide which aspects of the previous 

hidden state are relevant to the current 
context

• 𝑟" = 𝜎(𝑈>ℎ")* +𝑊>𝑥")
• ?ℎ" = tanh(𝑈 𝑟"⨀ℎ")* +𝑊𝑥")

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Reset Gate
• Goal: Decide which aspects of the previous 

hidden state are relevant to the current 
context

• 𝑟" = 𝜎(𝑈>ℎ")* +𝑊>𝑥")
• ?ℎ" = tanh(𝑈 𝑟"⨀ℎ")* +𝑊𝑥")

Intermediate representation for ℎ"
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Update 
Gate

• Goal: Decide which aspects of the 
intermediate hidden state and which aspects 
of the previous hidden state need to be 
preserved for future use

• 𝑧" = 𝜎(𝑈Aℎ")* +𝑊A𝑥")
• ℎ" = 1 − 𝑧" ℎ")* + 𝑧" ?ℎ"

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Update 
Gate

• Goal: Decide which aspects of the 
intermediate hidden state and which aspects 
of the previous hidden state need to be 
preserved for future use

• 𝑧" = 𝜎(𝑈Aℎ")* +𝑊A𝑥")
• ℎ" = 1 − 𝑧" ℎ")* + 𝑧" ?ℎ"

Updated hidden layer output
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What does this process look like in a 
single GRU unit?
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What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*
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What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*

𝜎
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⨀

Reset
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What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*

𝜎
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⨀

𝜎 +

Reset Update
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What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*

𝜎
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𝜎 +

Reset Update

ℎ"
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Overall, comparing inputs and outputs for 
some different types of neural units….

x
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htct
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ht

Feedforward RNN LSTM GRU
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When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which 
you need to train your model quickly and don’t have 
access to high-performance computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the 
same tasks

Why use LSTMs instead of GRUs?
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So far, we’ve 
looked at a 

variety of 
sequential 
networks.

• Recurrent neural networks
• LSTMs
• GRUs
• Stacked RNNs (LSTMs, GRUs)
• Bidirectional RNNs (LSTMs, GRUs)
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So far, we’ve 
looked at a 

variety of 
sequential 
networks.

• Recurrent neural networks
• LSTMs
• GRUs
• Stacked RNNs (LSTMs, GRUs)
• Bidirectional RNNs (LSTMs, GRUs)

All transform input sequences to output sequences in a one-to-
one fashion
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What if we don’t need (or want) a one-to-one 
correspondence between input and output?
• Encoder-decoder networks
• Also called sequence-to-sequence (seq2seq) models
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Encoder-Decoder Models

• Generate contextually-appropriate, arbitrary-length
output sequences

• Particularly useful for:
• Machine translation
• Summarization
• Question answering
• Dialogue modeling
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Encoder-Decoder Models

• Basic premise:
• Use a neural network to encode an input to an internal 

representation
• Pass that internal representation as input to a second neural 

network
• Use that neural network to decode the internal representation 

to a task-specific output sequence
• Usually, the encoder and decoder are both some type of RNN
• This method allows networks to be trained in an end-to-end fashion
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Where did this 
idea come from?

Recall our discussion of 
autoregressive generation:
• Start with a seed token (e.g., 

<s>)
• Predict the most likely next 

word in the sequence

• Use that word as input at the 
next timestep

• Repeat until an end token (or 
max length) is reached

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network
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Slight variation to this idea….

• Rather than generating a sentence from scratch, the model can generate a 
sentence given a prefix

• Pass the specified prefix through the language model, in sequence
• End with the hidden state corresponding to the last word of the prefix
• Start the autoregressive process at that point

• Goal: Output sequence should be a reasonable completion of the prefix
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Updated Autoregressive Generation

bidirectional RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

stacked RNN
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We can build upon this idea to transform 
one type of sequence to another.

• Machine translation example:
1. Take a sequence of text from Language #1
2. Take the translation of that text from Language #2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
5. Test the model by passing in only the first part of a concatenated 

sequence (text from Language #1) and checking to see what the 
generated completion (text from Language #2) looks like
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Intuition: Machine Translation

Hi, I’m Shahla.

Hi, I’m Shahla. </s>

Hi, RNN I’m RNN Shahla. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Shahla. RNN

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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This intuition forms the basis of 
encoder-decoder networks.

• Key elements of an encoder-decoder network:
• Encoder: Generates a contextualized representation of the input
• Decoder: Takes the contextualized representation and 

autoregressively generates a sequence of outputs
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More formally….

• Encoder
• Accepts an input sequence, 𝑥*D
• Generates a sequence of contextualized representations, ℎ*D

• Context vector
• A function, 𝑐, of ℎ*D that conveys the basic meaning of 𝑥*D to the decoder

• Decoder
• Accepts 𝑐 as input
• Generates an arbitrary-length sequence of hidden states, ℎ*E, from which a 

corresponding sequence of output states 𝑦*E can be obtained

2/13/20 Natalie Parde - UIC CS 521 52



Encoders

• Can be any type of neural network
• Feedforward network
• CNN
• RNN
• LSTM
• GRU

• These networks can be stacked on top of one another
• Very common: Stacked Bi-LSTMs

More common
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Decoders

• Need to perform autoregressive generation to produce the output sequence
• Can be any type of recurrent network

• RNN
• LSTM
• GRU
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Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")
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Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Final hidden state of the encoder
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Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

First hidden state of the decoder
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Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Some type of RNN

Embedding for the output 
sampled from the previous step
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Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Regular ending steps (activation function 
applied to hidden state outputs, and 
softmax applied to activation outputs)
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A couple useful extensions….

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I ) → ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐)
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Make the context vector available at each 
timestep when decoding, so that its 
influence doesn’t diminish over time
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A couple useful extensions….

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I ) → ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐)
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧") → 𝑦" = softmax(J𝑦")*, 𝑧", 𝑐)

Condition output on not only the hidden state, but 
the previous output and encoder context (easier 
to keep track of what’s been generated already)
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What other ways can we improve the 
decoder’s output quality?

• Beam search
• Improved context vector

• Final hidden state tends to be more focused on the end of the 
input sequence

• Can be addressed by using bidirectional RNNs, summing the 
encoder hidden states, or averaging the encoder hidden states
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Beam Search
• Selects from multiple possible outputs by framing the 

task as a state space search
• Combines breadth-first search with a heuristic filter

• Continually prunes search space to stay a fixed 
size (beam width)

• Results in a set of b hypotheses, where b is the beam 
width
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How does beam search work?

Decoder

Beam Size = 3
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q*

𝑦"Q*
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>
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How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>
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How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

Decoder

Decoder

Decoder
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How does beam search work?

Decoder

Beam Size = 1

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

Decoder

Decoder

Decoder

𝑦"QS =</s>

𝑦"QS
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How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

Decoder

Decoder

Decoder

𝑦"QS =</s>

𝑦"QS Decoder 𝑦"QT =</s>
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How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦"

Decoder

Decoder

Decoder

Decoder𝑦"

Decoder

Decoder

Decoder Decoder
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How do we 
choose a best 

hypothesis?

• Probabilistic scoring scheme
• Pass all or a subset of hypotheses to a 

downstream application
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So far, the 
encoder context 
vectors we’ve 
seen have been 
simple and 
static. • Can we do better?

• Yes 🙂
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Attention 
Mechanism

• Takes entire encoder context into 
account

• Dynamically updates during the course 
of decoding

• Can be embodied in a fixed-size vector
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Recall….

• We’ve already made our context vector 
available at each timestep when decoding

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐)
• The first step in creating our attention 

mechanism is to update our hidden state 
such that it is conditioned on an updated 
context vector with each decoding step

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐")
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How do we 
dynamically 
create a new 
context 
vector at 
each step?

• Compute a vector of scores that 
capture the relevance of each encoder 
hidden state to the decoder hidden 
state, ℎ")*I

• 𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I X ℎWG
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN
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In practice, a 
simple dot 

product isn’t the 
best similarity 

metric.

• Instead, parameterize the score with its own 
set of weights

• 𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I 𝑊YℎWG

• This allows the model to learn which 
aspects of similarity between the encoder 
and decoder states are important
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How do we 
make use of 

these 
context 

scores?

• Normalize them to create a vector of 
weights, 𝛼9W

• 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)∀𝑗 ∈ 𝑒)
• Provides the proportional relevance of 

each encoder hidden state 𝑗 to the 
current decoder state 𝑖

• Finally, take a weighted average over all 
the encoder hidden states to create a 
fixed-length context vector for the current 
decoder state

• 𝑐9 = ∑W 𝛼9WℎWG
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Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)) 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)) 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)) 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG))

Σ
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Summary: 
LSTMs, 
GRUs, 

Encoder-
Decoder 

Models, and 
Attention

• Although simple (“vanilla”) RNNs hold many advantages over 
feedforward networks for a variety of NLP tasks, they may struggle 
with managing context

• Long short-term memory networks (LSTMs) and gated recurrent 
units (GRUs) address this issue by introducing gating mechanisms 
that learn which information to forget and pass forward at different 
timesteps

• In their base forms, RNN models learn one-to-one 
correspondences between input and output sequences

• To learn mappings between arbitrary-length sequences instead, 
encoder-decoder models first encode input into an intermediate 
representation, and then decode that representation to a task-
specific sequence

• They do this by making use of techniques originating in 
autoregressive generation

• Output sequences from these models can be improved by performing 
beam search or incorporating improved mechanisms for passing 
context between encoder and decoder states

• One way to create improved context vectors is to use an attention 
mechanism

• Attention mechanisms take the entire encoder context into account, 
dynamically update during the course of decoding, and can be 
embodied in a fixed-size vector
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