
LSTMs, GRUs, Encoder-
Decoder Models, and 

Attention

Natalie Parde, Ph.D.
Department of Computer Science

University of Illinois at Chicago

CS 521: Statistical Natural Language 
Processing

Spring 2020

Many slides adapted from Jurafsky and Martin 
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/


“Vanilla” RNNs hold many 
advantages over feedforward 
networks for NLP tasks.
• Temporal context
• Variable-length input

• However …they’re not perfect (no 
networks are!)

2/13/20 Natalie Parde - UIC CS 521 2



In particular, RNNs 
may struggle with 
managing context.

• In a simple RNN, the final state tends to 
reflect more information about recent items 
than those at the beginning of the sequence

• Distant timesteps → less information

2/13/20 Natalie Parde - UIC CS 521 3



This long-distance information 
can be critical to many tasks!

N
atalie

took
a train
to O

’H
are

and
then
a plane

to L.A
.

and

then

a plane

to Tokyo

and

then

a plane

to M
iyazaki

w
here

she

finally

U
bered

to her

hotel

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

2/13/20 Natalie Parde - UIC CS 521 4



Why is it so hard 
to maintain long-
distance context?

• Hidden layers must perform two tasks 
simultaneously:

• Provide information useful for the 
current decision (input at t)

• Update and carry forward 
information required for future 
decisions (input at time t+1 and 
beyond)

• These tasks may not always be 
perfectly aligned with one another

2/13/20 Natalie Parde - UIC CS 521 5



There’s also the issue of 
“vanishing gradients”….

• When small derivatives are repeatedly 
multiplied together, the products can 
become extremely small

• This means that when backpropagating 
through time for a long sequence, 
gradients can become so close to zero 
that they are no longer effective for 
model training!

2/13/20 Natalie Parde - UIC CS 521 6



How can we address 
this?

• Design more complex RNNs that learn to:
• Forget information that is no longer 

needed
• Remember information still required 

for future decisions

2/13/20 Natalie Parde - UIC CS 521 7



Long Short-Term Memory 
Networks (LSTMs)

• Remove information no longer needed 
from the context, and add information 
likely to be needed later

• Do this by:
• Adding an explicit context layer to the 

architecture
• This layer controls the flow of 

information into and out of network 
layers using specialized neural units 
called gates

2/13/20 Natalie Parde - UIC CS 521 8



LSTM Gates
• Feedforward layer + sigmoid 

activation + pointwise 
multiplication with the layer 
being gated

• Combination of sigmoid 
activation and pointwise 
multiplication essentially 
creates a binary mask

• Values near 1 in the mask 
are passed through 
nearly unchanged

• Values near 0 are nearly 
erased

2/13/20 Natalie Parde - UIC CS 521 9



LSTM 
Gates

• Three main gates:
• Forget gate: Should we erase this 

existing information from the context?
• Add gate: Should we write this new 

information to the context?
• Output gate: What information should be 

revealed as output for the current hidden 
state?

2/13/20 Natalie Parde - UIC CS 521 10



• Goal: Delete information from the context 
that is no longer needed

• 𝑓" = 𝜎(𝑈'ℎ")* +𝑊'𝑥")
• 𝑘" = 𝑐")*⨀𝑓"

Forget 
Gate

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

2/13/20 Natalie Parde - UIC CS 521 11



• Goal: Delete information from the context 
that is no longer needed

• 𝑓" = 𝜎(𝑈'ℎ")* +𝑊'𝑥")
• 𝑘" = 𝑐")*⨀𝑓"

Forget 
Gate

Context vector from the previous timestep

2/13/20 Natalie Parde - UIC CS 521 12



Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

Regular RNN computation

2/13/20 Natalie Parde - UIC CS 521 13



Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

2/13/20 Natalie Parde - UIC CS 521 14



Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

New information to be added

2/13/20 Natalie Parde - UIC CS 521 15



Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔" = tanh(𝑈7ℎ")* +𝑊7𝑥")
• 𝑖" = 𝜎(𝑈9ℎ")* +𝑊9𝑥")
• 𝑗" = 𝑔"⨀𝑖"
• 𝑐" = 𝑗" + 𝑘"

Updated context vector contains:
• New information to be added
• Existing information from context vector that was 

not removed by the forget gate

2/13/20 Natalie Parde - UIC CS 521 16



Output 
Gate

• Goal: Decide what information is required for 
the current hidden state

• 𝑜" = 𝜎(𝑈<ℎ")* +𝑊<𝑥")
• ℎ" = 𝑜"⨀tanh(𝑐")

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

2/13/20 Natalie Parde - UIC CS 521 17



Output 
Gate

• Goal: Decide what information is required for 
the current hidden state

• 𝑜" = 𝜎(𝑈<ℎ")* +𝑊<𝑥")
• ℎ" = 𝑜"⨀tanh(𝑐")

Updated hidden layer output

2/13/20 Natalie Parde - UIC CS 521 18



What does this process look like in a 
single LSTM unit?

2/13/20 Natalie Parde - UIC CS 521 19



What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*

2/13/20 Natalie Parde - UIC CS 521 20



What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*

𝜎 ⨀

Forget

2/13/20 Natalie Parde - UIC CS 521 21



What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

2/13/20 Natalie Parde - UIC CS 521 22



What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

2/13/20 Natalie Parde - UIC CS 521 23



What does this process look like in a 
single LSTM unit?

𝑐")*

𝑥"

ℎ")*

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

ℎ"

𝑐"

2/13/20 Natalie Parde - UIC CS 521 24



Long Short-
Term 

Memory 
Networks 

(LSTMs)

• LSTMs thus accept as input:
• Context layer
• Hidden outputs from previous timestep
• Current input vector

• They return as output:
• Context layer
• Hidden outputs from the current 

timestep
• The output of the hidden layer can be used 

as input to subsequent layers in a stacked 
RNN, or to the network’s output layer

2/13/20 Natalie Parde - UIC CS 521 25



Gated 
Recurrent 

Units 
(GRUs)

• Also manage the context that is passed 
through to the next timestep, but do so by 
utilizing a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that seen 
in LSTMs

• Feedforward layer + sigmoid 
activation + pointwise multiplication 
with the layer being gated, resulting in a 
binary-like mask

2/13/20 Natalie Parde - UIC CS 521 26



Reset Gate
• Goal: Decide which aspects of the previous 

hidden state are relevant to the current 
context

• 𝑟" = 𝜎(𝑈>ℎ")* +𝑊>𝑥")
• ?ℎ" = tanh(𝑈 𝑟"⨀ℎ")* +𝑊𝑥")

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

2/13/20 Natalie Parde - UIC CS 521 27



Reset Gate
• Goal: Decide which aspects of the previous 

hidden state are relevant to the current 
context

• 𝑟" = 𝜎(𝑈>ℎ")* +𝑊>𝑥")
• ?ℎ" = tanh(𝑈 𝑟"⨀ℎ")* +𝑊𝑥")

Intermediate representation for ℎ"

2/13/20 Natalie Parde - UIC CS 521 28



Update 
Gate

• Goal: Decide which aspects of the 
intermediate hidden state and which aspects 
of the previous hidden state need to be 
preserved for future use

• 𝑧" = 𝜎(𝑈Aℎ")* +𝑊A𝑥")
• ℎ" = 1 − 𝑧" ℎ")* + 𝑧" ?ℎ"

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

2/13/20 Natalie Parde - UIC CS 521 29



Update 
Gate

• Goal: Decide which aspects of the 
intermediate hidden state and which aspects 
of the previous hidden state need to be 
preserved for future use

• 𝑧" = 𝜎(𝑈Aℎ")* +𝑊A𝑥")
• ℎ" = 1 − 𝑧" ℎ")* + 𝑧" ?ℎ"

Updated hidden layer output

2/13/20 Natalie Parde - UIC CS 521 30



What does this process look like in a 
single GRU unit?

2/13/20 Natalie Parde - UIC CS 521 31



What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*

2/13/20 Natalie Parde - UIC CS 521 32



What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*

𝜎
tanh

⨀

Reset

2/13/20 Natalie Parde - UIC CS 521 33



What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*

𝜎
tanh

⨀

𝜎 +

Reset Update

2/13/20 Natalie Parde - UIC CS 521 34



What does this process look like in a 
single GRU unit?

𝑥"

ℎ")*

𝜎
tanh

⨀

𝜎 +

Reset Update

ℎ"

2/13/20 Natalie Parde - UIC CS 521 35



Overall, comparing inputs and outputs for 
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU

2/13/20 Natalie Parde - UIC CS 521 36



When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which 
you need to train your model quickly and don’t have 
access to high-performance computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the 
same tasks

Why use LSTMs instead of GRUs?

2/13/20 Natalie Parde - UIC CS 521 37



So far, we’ve 
looked at a 

variety of 
sequential 
networks.

• Recurrent neural networks
• LSTMs
• GRUs
• Stacked RNNs (LSTMs, GRUs)
• Bidirectional RNNs (LSTMs, GRUs)

2/13/20 Natalie Parde - UIC CS 521 38



So far, we’ve 
looked at a 

variety of 
sequential 
networks.

• Recurrent neural networks
• LSTMs
• GRUs
• Stacked RNNs (LSTMs, GRUs)
• Bidirectional RNNs (LSTMs, GRUs)

All transform input sequences to output sequences in a one-to-
one fashion

2/13/20 Natalie Parde - UIC CS 521 39



What if we don’t need (or want) a one-to-one 
correspondence between input and output?
• Encoder-decoder networks
• Also called sequence-to-sequence (seq2seq) models

2/13/20 Natalie Parde - UIC CS 521 40



Encoder-Decoder Models

• Generate contextually-appropriate, arbitrary-length
output sequences

• Particularly useful for:
• Machine translation
• Summarization
• Question answering
• Dialogue modeling

2/13/20 Natalie Parde - UIC CS 521 41



Encoder-Decoder Models

• Basic premise:
• Use a neural network to encode an input to an internal 

representation
• Pass that internal representation as input to a second neural 

network
• Use that neural network to decode the internal representation 

to a task-specific output sequence
• Usually, the encoder and decoder are both some type of RNN
• This method allows networks to be trained in an end-to-end fashion

2/13/20 Natalie Parde - UIC CS 521 42



Where did this 
idea come from?

Recall our discussion of 
autoregressive generation:
• Start with a seed token (e.g., 

<s>)
• Predict the most likely next 

word in the sequence

• Use that word as input at the 
next timestep

• Repeat until an end token (or 
max length) is reached

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

2/13/20 Natalie Parde - UIC CS 521 43



Slight variation to this idea….

• Rather than generating a sentence from scratch, the model can generate a 
sentence given a prefix

• Pass the specified prefix through the language model, in sequence
• End with the hidden state corresponding to the last word of the prefix
• Start the autoregressive process at that point

• Goal: Output sequence should be a reasonable completion of the prefix

2/13/20 Natalie Parde - UIC CS 521 44



Updated Autoregressive Generation

bidirectional RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

stacked RNN

2/13/20 Natalie Parde - UIC CS 521 45



We can build upon this idea to transform 
one type of sequence to another.

• Machine translation example:
1. Take a sequence of text from Language #1
2. Take the translation of that text from Language #2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
5. Test the model by passing in only the first part of a concatenated 

sequence (text from Language #1) and checking to see what the 
generated completion (text from Language #2) looks like

2/13/20 Natalie Parde - UIC CS 521 46



Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

2/13/20 Natalie Parde - UIC CS 521 47



Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

2/13/20 Natalie Parde - UIC CS 521 48



Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

2/13/20 Natalie Parde - UIC CS 521 49



Intuition: Machine Translation

Hi, I’m Shahla.

Hi, I’m Shahla. </s>

Hi, RNN I’m RNN Shahla. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Shahla. RNN

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

2/13/20 Natalie Parde - UIC CS 521 50



This intuition forms the basis of 
encoder-decoder networks.

• Key elements of an encoder-decoder network:
• Encoder: Generates a contextualized representation of the input
• Decoder: Takes the contextualized representation and 

autoregressively generates a sequence of outputs

2/13/20 Natalie Parde - UIC CS 521 51



More formally….

• Encoder
• Accepts an input sequence, 𝑥*D
• Generates a sequence of contextualized representations, ℎ*D

• Context vector
• A function, 𝑐, of ℎ*D that conveys the basic meaning of 𝑥*D to the decoder

• Decoder
• Accepts 𝑐 as input
• Generates an arbitrary-length sequence of hidden states, ℎ*E, from which a 

corresponding sequence of output states 𝑦*E can be obtained

2/13/20 Natalie Parde - UIC CS 521 52



Encoders

• Can be any type of neural network
• Feedforward network
• CNN
• RNN
• LSTM
• GRU

• These networks can be stacked on top of one another
• Very common: Stacked Bi-LSTMs

More common

2/13/20 Natalie Parde - UIC CS 521 53



Decoders

• Need to perform autoregressive generation to produce the output sequence
• Can be any type of recurrent network

• RNN
• LSTM
• GRU

2/13/20 Natalie Parde - UIC CS 521 54



Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

2/13/20 Natalie Parde - UIC CS 521 55



Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Final hidden state of the encoder

2/13/20 Natalie Parde - UIC CS 521 56



Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

First hidden state of the decoder

2/13/20 Natalie Parde - UIC CS 521 57



Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Some type of RNN

Embedding for the output 
sampled from the previous step

2/13/20 Natalie Parde - UIC CS 521 58



Decoders

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I )
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Regular ending steps (activation function 
applied to hidden state outputs, and 
softmax applied to activation outputs)

2/13/20 Natalie Parde - UIC CS 521 59



A couple useful extensions….

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I ) → ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐)
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧")

Make the context vector available at each 
timestep when decoding, so that its 
influence doesn’t diminish over time

2/13/20 Natalie Parde - UIC CS 521 60



A couple useful extensions….

• Formally….
• 𝑐 = ℎDG

• ℎHI = 𝑐

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I ) → ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐)
• 𝑧" = 𝑓(ℎ"I)
• 𝑦" = softmax(𝑧") → 𝑦" = softmax(J𝑦")*, 𝑧", 𝑐)

Condition output on not only the hidden state, but 
the previous output and encoder context (easier 
to keep track of what’s been generated already)

2/13/20 Natalie Parde - UIC CS 521 61



What other ways can we improve the 
decoder’s output quality?

• Beam search
• Improved context vector

• Final hidden state tends to be more focused on the end of the 
input sequence

• Can be addressed by using bidirectional RNNs, summing the 
encoder hidden states, or averaging the encoder hidden states

2/13/20 Natalie Parde - UIC CS 521 62



Beam Search
• Selects from multiple possible outputs by framing the 

task as a state space search
• Combines breadth-first search with a heuristic filter

• Continually prunes search space to stay a fixed 
size (beam width)

• Results in a set of b hypotheses, where b is the beam 
width

2/13/20 Natalie Parde - UIC CS 521 63



How does beam search work?

Decoder

Beam Size = 3

2/13/20 Natalie Parde - UIC CS 521 64



How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q*

𝑦"Q*

2/13/20 Natalie Parde - UIC CS 521 65



How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

2/13/20 Natalie Parde - UIC CS 521 66



How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

2/13/20 Natalie Parde - UIC CS 521 67



How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

2/13/20 Natalie Parde - UIC CS 521 68



How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

Decoder

Decoder

Decoder

2/13/20 Natalie Parde - UIC CS 521 69



How does beam search work?

Decoder

Beam Size = 1

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

Decoder

Decoder

Decoder

𝑦"QS =</s>

𝑦"QS

2/13/20 Natalie Parde - UIC CS 521 70



How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦"

𝑦"Q*

𝑦"Q* Decoder

Decoder

Decoder

Decoder𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

Decoder

Decoder

Decoder

𝑦"QS =</s>

𝑦"QS Decoder 𝑦"QT =</s>

2/13/20 Natalie Parde - UIC CS 521 71



How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦"

Decoder

Decoder

Decoder

Decoder𝑦"

Decoder

Decoder

Decoder Decoder

2/13/20 Natalie Parde - UIC CS 521 72

𝑦"Q*

𝑦"Q*

𝑦"Q*

𝑦"QR

𝑦"QR

𝑦"QR =</s>

𝑦"QS =</s>

𝑦"QS 𝑦"QT =</s>



How do we 
choose a best 

hypothesis?

• Probabilistic scoring scheme
• Pass all or a subset of hypotheses to a 

downstream application

2/13/20 Natalie Parde - UIC CS 521 73



So far, the 
encoder context 
vectors we’ve 
seen have been 
simple and 
static. • Can we do better?

• Yes 🙂

2/13/20 Natalie Parde - UIC CS 521 74



Attention 
Mechanism

• Takes entire encoder context into 
account

• Dynamically updates during the course 
of decoding

• Can be embodied in a fixed-size vector

2/13/20 Natalie Parde - UIC CS 521 75



Recall….

• We’ve already made our context vector 
available at each timestep when decoding

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐)
• The first step in creating our attention 

mechanism is to update our hidden state 
such that it is conditioned on an updated 
context vector with each decoding step

• ℎ"I = 𝑔(J𝑦")*, ℎ")*I , 𝑐")

2/13/20 Natalie Parde - UIC CS 521 76



How do we 
dynamically 
create a new 
context 
vector at 
each step?

• Compute a vector of scores that 
capture the relevance of each encoder 
hidden state to the decoder hidden 
state, ℎ")*I

• 𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I X ℎWG

2/13/20 Natalie Parde - UIC CS 521 77



Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

2/13/20 Natalie Parde - UIC CS 521 78



Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

2/13/20 Natalie Parde - UIC CS 521 79



Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I X ℎWG

2/13/20 Natalie Parde - UIC CS 521 80



Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I X ℎWG

2/13/20 Natalie Parde - UIC CS 521 81



Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I X ℎWG

2/13/20 Natalie Parde - UIC CS 521 82



Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I X ℎWG

2/13/20 Natalie Parde - UIC CS 521 83



In practice, a 
simple dot 

product isn’t the 
best similarity 

metric.

• Instead, parameterize the score with its own 
set of weights

• 𝑠𝑐𝑜𝑟𝑒 ℎ9)*I , ℎWG = ℎ9)*I 𝑊YℎWG

• This allows the model to learn which 
aspects of similarity between the encoder 
and decoder states are important

2/13/20 Natalie Parde - UIC CS 521 84



How do we 
make use of 

these 
context 

scores?

• Normalize them to create a vector of 
weights, 𝛼9W

• 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)∀𝑗 ∈ 𝑒)
• Provides the proportional relevance of 

each encoder hidden state 𝑗 to the 
current decoder state 𝑖

• Finally, take a weighted average over all 
the encoder hidden states to create a 
fixed-length context vector for the current 
decoder state

• 𝑐9 = ∑W 𝛼9WℎWG

2/13/20 Natalie Parde - UIC CS 521 85



Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

2/13/20 Natalie Parde - UIC CS 521 86



Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)) 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)) 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG)) 𝛼9W = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ9)*I , ℎWG))

Σ

2/13/20 Natalie Parde - UIC CS 521 87



Summary: 
LSTMs, 
GRUs, 

Encoder-
Decoder 

Models, and 
Attention

• Although simple (“vanilla”) RNNs hold many advantages over 
feedforward networks for a variety of NLP tasks, they may struggle 
with managing context

• Long short-term memory networks (LSTMs) and gated recurrent 
units (GRUs) address this issue by introducing gating mechanisms 
that learn which information to forget and pass forward at different 
timesteps

• In their base forms, RNN models learn one-to-one 
correspondences between input and output sequences

• To learn mappings between arbitrary-length sequences instead, 
encoder-decoder models first encode input into an intermediate 
representation, and then decode that representation to a task-
specific sequence

• They do this by making use of techniques originating in 
autoregressive generation

• Output sequences from these models can be improved by performing 
beam search or incorporating improved mechanisms for passing 
context between encoder and decoder states

• One way to create improved context vectors is to use an attention 
mechanism

• Attention mechanisms take the entire encoder context into account, 
dynamically update during the course of decoding, and can be 
embodied in a fixed-size vector

2/13/20 Natalie Parde - UIC CS 521 88


